en

Laser Surface Hardening of Tool Steels from freeamfva's blog

Laser Surface Hardening of Tool Steels—Experimental and Numerical Analysis

This research work is focused on both experimental and numerical analysis of laser surface hardening of AISI M2 high speed tool steel. Experimental analysis aims at clarifying effect of different laser processing parameters on properties and performance of laser surface treated specimens. Numerical analysis is concerned with analytical approaches that provide efficient tools for estimation of surface temperature, surface hardness and hardened depth as a function of laser surface hardening parameters. Get more news about Laser Surface Quenching Process For Sale,you can vist our website!
Results indicated that optimization of laser processing parameters including laser power, laser spot size and processing speed combination is of considerable importance for achieving maximum surface hardness and deepest hardened zone. In this concern, higher laser power, larger spot size and lower processing speed are more efficient. Hardened zone with 1.25 mm depth and 996 HV surface hardness was obtained using 1800 W laser power, 4 mm laser spot size and 0.5 m/min laser processing speed. The obtained maximum hardness of laser surface treated specimen is 23% higher than that of conventionally heat treated specimen. This in turn has resulted in 30% increase in wear resistance of laser surface treated specimen.
Numerical analysis has been carried out for calculation of temperature gradient and cooling rate based on Ashby and Easterling equations. Then, surface hardness and hardened depth have been numerically estimated based on available Design-Expert software. Numerical results indicated that cooling rate of laser surface treated specimen is high enough to be beyond the nose of the CCT diagram of the used steel that in turn resulted in a hard/martensitic structure. Numerically estimated values of surface temperature, surface hardness and hardened depth as a function of laser processing parameters are in a good agreement with experimental results. Laser processing charts indicating expected values of surface temperature, surface hardness and hardened depth as a function of different wider range of laser processing parameters are proposed.

The Wall

No comments
You need to sign in to comment