The main applications of alumina ceramic substrates from freeamfva's blog
The main applications of alumina ceramic substrates
Ceramic substrates are widely used in various fields such as power electronics, electronic packaging, hybrid microelectronics, and multi-chip modules due to their excellent thermal conductivity and airCeramic Substrates tightness. Among them, alumina ceramic is the most commonly used ceramic substrate material, favored for its overall good performance. The advantages of alumina ceramic substrates include excellent insulation performance, exceptional high-temperature resistance, high strength and hardness, outstanding chemical stability, and good processability. They effectively isolate circuits, withstand high temperatures, resist chemical corrosion, and meet complex processing and high-precision dimensional requirements. The main applications of alumina ceramic substrates are as follows:Get more news about Alumina Ceramic Substrate,you can vist our website!
Ceramic substrates for chip resistors
Alumina ceramic substrates for resistors offer advantages such as small size, light weight, low coefficient of thermal expansion, high reliability, high thermal conductivity, and density. They greatly improve the reliability and wiring density of circuits, making them an ideal carrier material for chip resistor components.
Ceramic substrates for hybrid integrated circuits
Hybrid integrated circuits involve packaging multiple components, with at least one of them being active. These complex circuits are created by installing the components on metal conductor-insulator sheets produced through thick-film or thin-film processes. The substrate provides mechanical support for the circuit, serves as the deposition site for dielectric and resistance materials, and offers mechanical support for all passive and active chip elements. Alumina, beryllia, silicon dioxide, and aluminum nitride are commonly used substrates for hybrid integrated circuits. However, considering cost and performance, alumina substrates with smooth surfaces are widely used. The quality and grades of alumina substrates vary depending on the alumina content. Common options include 99.6% alumina for thin-film circuits and 96% alumina for thick-film circuits. Multilayer co-fired alumina ceramics generally use alumina green sheets with alumina content ranging from 90% to 95% as the base material.
Substrates for power devices
For packaging power electronic devices, substrates need to provide not only basic wiring (interconnection) functions but also high thermal conductivity, insulation, heat resistance, pressure resistance, and thermal matching capabilities. Metal-ceramic substrates such as DBC (Direct Bonded Copper) and DPC (Direct Plated Copper) have superior performance in terms of thermal conductivity, insulation, pressure resistance, and heat resistance. They have become the preferred materials for power device packaging and are gradually gaining market recognition. The most common substrate material for device packaging is alumina (Al2O3), typically with an alumina content of 96%. Alumina substrates are mature in terms of technology and have low cost.
Alumina ceramic substrates for LEDs
High-power LED heat dissipation substrates are primarily composed of ceramic substrates. The most commonly used high-power ceramic substrates in the market are LTCC (Low-Temperature Co-Fired Ceramic) and DPC (Direct Plated Copper). Ceramic materials such as alumina and aluminum nitride are used. Alumina ceramic substrates for LEDs possess high heat dissipation and air tightness, which improve the LED's luminous efficiency and lifespan. Their excellent air tightness also provides high weather resistance, allowing them to be used in various environments.
Post
By | freeamfva |
Added | Jul 27 '23 |
Tags
Rate
Archives
- All
- November 2024
- October 2024
- September 2024
- August 2024
- July 2024
- June 2024
- May 2024
- April 2024
- March 2024
- February 2024
- January 2024
- December 2023
- November 2023
- October 2023
- September 2023
- August 2023
- July 2023
- June 2023
- May 2023
- April 2023
- March 2023
- February 2023
- January 2023
- December 2022
- November 2022
- October 2022
- September 2022
- August 2022
- July 2022
- June 2022
- May 2022
- April 2022
- March 2022
- February 2022
- January 2022
- December 2021
- November 2021
- October 2021
- September 2021
- August 2021
- July 2021
- June 2021
- May 2021
The Wall