SEAS Researchers Develop New Portable from freeamfva's blog
SEAS Researchers Develop New Portable
Researchers at the School of Engineering and Applied Sciences developed a portable, injectable blood clotting agent which has demonstrated high efficacy in preliminary trials with mice models.To get more news about hemostatic agent, you can visit rusuntacmed.com official website.
The novel hemostat — dubbed HAPPI, or Hemostatic Agents via Polymer Peptide Interfusion — reduced bleeding time by 99 percent and overall blood loss by 97 percent in mice models, according to a paper published in Science Advances last month. It can be stored at room temperature for several months prior to being reconstituted with saline and then intravenously injected in patients.
Bioengineering professor Samir S. Mitragotri, the senior author of the paper, said in an interview that a critical motivation for developing the new hemostat is the gap that occurs between the time of injury and the time of treatment for trauma patients at hospitals.
“Many trauma deaths arising from blood loss occur in the first hour of the trauma — the so-called golden hour,” Mitragotri said. “We sought to develop an easily storable agent that the emergency care providers can carry with them and inject in patients on site to reduce blood loss and save lives.”
SEAS researchers developed HAPPI in collaboration with scientists from Massachusetts General Hospital, Beth Israel Deaconess Medical Center, and Case Western Reserve University. First author of the study and postdoctoral fellow Yongsheng Gao described the hemostat as having the consistency of “cotton candy” when kept freeze-dried for storage.
“Intravenous injectable, easy synthesis and storage, and the availability for first responders are the defining characteristics,” Gao said.
He added that biomimicry was key to the new hemostatic agent’s design.
“Platelets are the key players in the natural hemostasis process,” Gao said. “They are constantly circulating in our blood and once they find a vascular injury, they will activate, attach to the injury site and form a platelet plug to stop the bleeding.
Mitragotri characterized HAPPI as “enhancing the efficacy of the natural process of hemostasis by working with activated platelets.”Our hemostatic agent binds to activated platelets as well as the damage sites on the blood vessels,” Mitragotri said. “This leads to the recruitment of platelets to the site of the damage. By recruiting more activated platelets to the site of trauma, the clotting process can be accelerated, thus leading to reduced blood loss.”
HAPPI “showed signs of working almost instantaneously” to stem blood loss upon being injected in mice, according to Mitragotri.
Still, Gao noted that the hemostat has to be tested for both “potential toxicity and therapeutic effect” in larger animal models prior to becoming widely-available for use by first responders.
While researchers have yet to explore translating the hemostat to human patients through commercialization, Mitragotri said he views the latest published findings as “exciting.”
“Stopping internal bleeding is a challenging task,” Mitragotri said. “It needs an agent that is strong enough to induce clots at the bleeding site, but not too strong to induce clots at unwanted sites. So the outcomes of the first studies confirming efficacy in mice was a significant milestone in the project.
Post
By | freeamfva |
Added | Feb 26 '23 |
Tags
Rate
Archives
- All
- November 2024
- October 2024
- September 2024
- August 2024
- July 2024
- June 2024
- May 2024
- April 2024
- March 2024
- February 2024
- January 2024
- December 2023
- November 2023
- October 2023
- September 2023
- August 2023
- July 2023
- June 2023
- May 2023
- April 2023
- March 2023
- February 2023
- January 2023
- December 2022
- November 2022
- October 2022
- September 2022
- August 2022
- July 2022
- June 2022
- May 2022
- April 2022
- March 2022
- February 2022
- January 2022
- December 2021
- November 2021
- October 2021
- September 2021
- August 2021
- July 2021
- June 2021
- May 2021
The Wall