liquid silicone rubber molding components
Liquid silicone rubber (LSR) injection molding has been around for years. Its use has significantly expanded recently, especially in medical devices and wearable technology. LSR cures faster and offers properties not obtainable with traditional rubber materials, especially heat-resistance, extreme low-temperature flexibility, chemical resistance, biological inertness, and an intrinsic capacity for reducing friction. The material’s expanded use has resulted in the development of new LSR process equipment, especially technology that optimizes LSR injection molding machines to provide the greatest value and ease of use.Get more news about
Silicone Injection Molding,you can vist our website!
The basic raw material for silicone rubber is sand, or silicon dioxide. The material is processed into pure silicon. It is then reacted with methyl chloride, after which a range of processing steps create a variety of silicone types, including liquid.
LSR is a two-component reactive chemical with a thick, almost paste-like consistency, which has been compared to peanut butter. The two components are usually shipped in separate containers. Some medical-grade silicones are shipped in small disposable plastic cartridges. The two components are mixed in a 1:1 ratio to produce a reaction. Accelerated by heat, the two liquids then change to a rubber.
LSR injection molding is an inherently clean production process, because the component chemicals are sealed within a closed system. No ambient air contacts the parts until they are removed from the mold, eliminating issues with dust and moisture. This also improves part quality, because contaminants can diminish the cured rubber’s physical properties.
MEDICAL, WEARABLE BENEFITS
Use of LSR is growing in both traditional rubber applications and those where traditional rubber materials had not previously been used. Key examples include medical devices, wearables, automotive, industrial, and even home goods (see sidebar).
Medical devices – LSR cures completely and quickly. This is especially critical when medical devices are placed in a patient’s body, because it means the device will not leach chemicals and cause potential adverse reactions. By contrast, latex, a material long used in the medical industry, does not fully cure during production, and can lead to adverse patient reactions.
Due to LSR’s chemical makeup, it does not degrade until heated to very high temperatures – much higher than most other polymers could tolerate. So LSR can handle sterilization processes, contributing to its effectiveness for medical and baby care uses.
A final (and critical) advantage is the ability to use LSRs to manufacture drug-eluting devices (DEDs). For example, hormones used in the NuvaRing contraceptive product are injected as an additive in the LSR dosing process. LSR DEDs can also be placed in pacemaker heart catheter leads, enabling the leads to introduce anti-inflammatory medication directly into heart tissue for improved results.
Wearable technology – Wearable fitness trackers, such as FitBit and Jawbone, are largely responsible for the expansion of the flexible wearables category. With its ability to handle both high and low temperatures, ultraviolet (UV), and ozone without degrading, LSR is a better fit than traditional materials for wearable technology used under constant sun exposure. Unlike other rubber, products manufactured with LSR are unlikely to cause adverse skin reactions when worn by users, even for extended periods of time.